jueves, 25 de septiembre de 2014

TERMINOLOGIA CIENCIA MEDICA

TÉRMINOS SOBRE LA CIENCIA Y LA TECNOLOGÍA Y LA SALUD


La biofísica es la ciencia que estudia la biología con los principios y métodos de la física. Se discute si la biofísica es una rama de la física o de la biología. Desde un punto de vista puede concebirse que los conocimientos y enfoques acumulados en la física "pura" pueden aplicarse al estudio de los sistemas biológicos. En ese caso la biofísica le aporta conocimientos a la biología, pero no a la física, sin embargo, le ofrece a la física evidencia experimental que permite corroborar teorías. Ejemplos en ese sentido son la física de la audición, la biomecánica, los motores molecularescomunicación molecular, entre otros campos de la biología abordada por la física.
Otros estudiosos consideran que existen ramas de la física que deben desarrollarse a profundidad como problemas físicos específicamente relacionados con la materia viviente. Así, por ejemplo, las polímerosbiológicos (como las proteínas) no son lo suficientemente grandes como para poderlos tratar como un sistema mecánico, a la vez que no son lo suficientemente pequeños como para tratarlos como moléculas simples en solución. Los cambios energéticos que ocurren durante una reacción química catalizada por una enzima, o fenómenos como el acoplamiento químico-osmótico parecen requerir más de un enfoque físico teórico profundo que de una evaluación biológica.
Entre esos dos extremos aparecen problemas como la generación y propagación del impulso nervioso donde se requiere un pensamiento biológico, más un pensamiento físico así como algo cualitativamente nuevo que aparece con la visión integradora del problema.
Una subdisciplina de la biofísica es la dinámica molecular, que intenta explicar las propiedades químicas de las biomoléculas a través de su estructura y sus propiedades dinámicas y de equilibrio. Otra subdisciplina que se encuentra actualmente en boga es la biología de sistemas, en la que normalmente se renuncia al detalle molecular para tratar de entender las interacciones globales de los sistemas vivos.

La bioquímica es una ciencia que estudia la composición química de los seres vivos, especialmente las proteínas, carbohidratos, lípidos y ácidos nucleicos, además de otras pequeñas moléculas presentes en las células y las reacciones químicas que sufren estos compuestos (metabolismo) que les permiten obtener energía (catabolismo) y generar biomoléculas propias (anabolismo). La bioquímica se basa en el concepto de que todo ser vivo contiene carbono y en general las moléculas biológicas están compuestas principalmente de carbono, hidrógeno, oxígeno, nitrógeno, fósforo y azufre.
Es la ciencia que estudia la base química de las moléculas que componen las células y los tejidos, que catalizan las reacciones químicas del metabolismo celular como ladigestión, la fotosíntesis y la inmunidad, entre otras muchas cosas.
Podemos entender la bioquímica como una disciplina científica integradora que aborda el estudio de las biomoléculas y biosistemas. Integra de esta forma las leyes químico-físicas y la evolución biológica que afectan a los biosistemas y a sus componentes. Lo hace desde un punto de vista molecular y trata de entender y aplicar su conocimiento a amplios sectores de la Medicina (terapia genética y Biomedicina), la agroalimentación, la farmacología.
Constituye un pilar fundamental de la biotecnología, y se ha consolidado como una disciplina esencial para abordar los grandes problemas y enfermedades actuales y del futuro, tales como el cambio climático, la escasez de recursos agroalimentarios ante el aumento de población mundial, el agotamiento de las reservas de combustibles fósiles, la aparición de nuevas formas de alergias, el aumento del cáncer, las enfermedades genéticas, la obesidad, etc.
La bioquímica es una ciencia experimental y por ello recurrirá al uso de numerosas técnicas instrumentales propias y de otros campos, pero la base de su desarrollo parte del hecho de que lo que ocurre en vivo a nivel subcelular se mantiene o conserva tras el fraccionamiento subcelular, y a partir de ahí, podemos estudiarlo y extraer conclusiones.

La genética (del griego antiguo γενετικός /guennetikós/, ‘genetivo’, y este de γένεσις /guénesis/, ‘origen’)1 2 3 es el campo de la biología que busca comprender la herencia biológica que se transmite de generación en generación.
El estudio de la genética permite comprender qué es lo que exactamente ocurre en el ciclo celular, (replicar nuestras células) y reproducción, (meiosis) de los seres vivos y cómo puede ser que, por ejemplo, entre seres humanos se transmiten características biológicas genotipo (contenido del genoma específico de un individuo en forma de ADN), características físicasfenotipo, de apariencia y hasta de personalidad.
El principal objeto de estudio de la genética son los genes, formados por segmentos de ADN (doble hebra) y ARN (hebra simple), tras la transcripción de ARN mensajeroARN ribosómico yARN de transferencia, los cuales se sintetizan a partir de ADN. El ADN controla la estructura y el funcionamiento de cada célula, con la capacidad de crear copias exactas de sí mismo, tras un proceso llamado replicación, en el cual el ADN se replica.
En 1865 un monje científico checo-alemán llamado Gregor Mendel observó que los organismos heredan caracteres de manera diferenciada. Estas unidades básicas de la herencia son actualmente denominadas genes.
En 1941 Edward Lawrie Tatum y George Wells Beadle demuestran que los genes [ARN-mensajero] codifican proteínas; luego en 1953 James D. Watson y Francis Crick determinan que la estructura del ADN es una doble hélice en direcciones antiparalelas, polimerizadas en dirección 5' a 3', para el año 1977 Fred Sanger, Walter Gilbert, y Allan Maxam secuencian ADN completo del genoma del bacteriófago y en 1990 se funda el Proyecto Genoma Humano.

Lnanomedicina es la aplicación de la nanotecnología en el campo de la medicina. La e inclusive la futura aplicación de la nanotecnología molecular. Los problemas actuales para la nanomedicina involucra la comprensión de las consecuencias de la toxicidad y el impacto ambiental de materiales a nanoescala. Un nanómetro (nm) es una millonésima de un milímetro.
En teoría, con la nanotecnología se podrían construir pequeños nano-robotsnanobots que serían un ejército a nivel nanométrico en nuestro cuerpo, programados para realizar casi cualquier actividad.
Por ejemplo, como dice la Dra. Flor una de las aplicaciones más prometedoras sería la habilidad de programar estos nanobots para buscar y destruir las células responsables de la formación del cáncer.2 Los nanobots de la nanomedicina podrían producirse con la función de reestructurar o reparar tejidos músculosos u oseos. Las fracturas podrían ser cosa del pasado, los nanobots podrían programarse para identificar fisuras en loshuesos y arreglar éstos de dos formas; realizando algún proceso para acelerar la recuperación del hueso roto o fundiéndose con el hueso roto o inclusive las dos.3 Y así con infinidad de enfermedades de varios tipos disolviendo sustancias de múltiples variedades según, en sangre o en la zona a tratar específicamente, inyectando pequeñas cantidades de antibióticos o antisépticos en caso de resfriados o inflamaciones, etc.
Actualmente, las nanopartículas de plata se están usando como desinfectantes y antisépticos, en productos farmacéuticos y quirúrgicos, en ropa interiorguantesmedias y zapatos deportivos, en productos parabebés, productos de higiene personal, cubiertosrefrigeradoreslavadoras de ropa y todo tipo de materiales implantables.4 Un problema derivado de estas aplicaciones es su impacto ambiental, ya que en 2005, un estudio encontró que la plata en nanopartículas es 45 veces más tóxica que la corriente y además, en 2008, otro estudio indicó que pueden pasar nanopartículas sintéticas a los desagües, con fuerte toxicidad para la vida acuática, eliminando también bacterias benignas en los sistemas de drenaje.
En medicinatratamiento o terapia (del griego θεραπεία/therapeia = tratamiento médico) es el conjunto de medios de cualquier clase (higiénicosfarmacológicosquirúrgicos o físicos) cuya finalidad es la curación o el alivio (paliación) de las enfermedades o síntomas. Es un tipo de juicio clínico. Son sinónimos: terapia, terapéutico, cura, método curativo.
No se debe confundir con terapéutica, que es la rama de las ciencias de la salud que se ocupa de los medios empleados y su forma de aplicarlos en el tratamiento de las enfermedades, con el fin de aliviar los síntomas o de producir la curación.

Tipos de tratamiento

"Goya atendido por Arrieta" (1820) óleo de Francisco de Goya.
WIKIPEDIA

El genoma humano es el genoma del Homo sapiens, es decir, la secuencia de ADN contenida en 23 pares de cromosomas en el núcleo de cada célula humana diploide.
De los 23 pares, 22 son cromosomas autosómicos y un par determinante del sexo (dos cromosomas X en mujeres y uno X y uno Y en varones). El genoma haploide (es decir, con una sola representación de cada par) tiene una longitud total aproximada de 3200 millones de pares de bases de ADN (3200 Mb) que contienen unos 20.000-25.000 genes1 (las estimaciones más recientes apuntan a unos 20.500). De las 3200 Mb unas 2950 Mb corresponden a eucromatina y unas 250 Mb a heterocromatina. El Proyecto Genoma Humano produjo una secuencia de referencia del genoma humano eucromático, usado en todo el mundo en las cienciasbiomédicas.
La secuencia de ADN que conforma el genoma humano contiene codificada la información necesaria para la expresión, altamente coordinada y adaptable al ambiente, del proteoma humano, es decir, del conjunto de las proteínas del ser humano. Las proteínas, y no el ADN, son las principales biomoléculas efectoras; poseen funciones estructurales, enzimáticasmetabólicas, reguladoras, señalizadoras..., organizándose en enormes redes funcionales de interacciones. En definitiva, el proteoma fundamenta la particular morfología y funcionalidad de cada célula. Asimismo, la organización estructural y funcional de las distintas células conforma cada tejido y cada órgano, y, finalmente, el organismo vivo en su conjunto. Así, el genoma humano contiene la información básica necesaria para el desarrollo físico de un ser humano completo.
El genoma humano presenta una densidad de genes muy inferior a la que inicialmente se había predicho, con sólo en torno al 1,5%2 de su longitud compuesta por exones codificantes de proteínas. Un 70% está compuesto por ADN extragénico y un 30 % por secuencias relacionadas con genes. Del total de ADN extragénico, aproximadamente un 70% corresponde a repeticiones dispersas, de manera que, más o menos, la mitad del genoma humano corresponde a secuencias repetitivas de ADN. Por su parte, del total de ADN relacionado con genes se estima que el 95% corresponde a ADN no codificante: pseudogenes, fragmentos de genes, intrones o secuencias UTR, entre otros.
En el genoma humano se detectan más de 280.000 elementos reguladores, aproximadamente un total de 7Mb de secuencia, que se originaron por medio de inserciones de elementos móviles. Estas regiones reguladoras se conservan en elementos no exónicos (CNEEs),fueron nombrados como: SINE, LINE, LTR. Se sabe que al menos entre un 11% y un 20% de estas secuencias reguladoras de genes, que están conservadas entre especies, fue formado por elementos móviles.
El proyecto genoma humano, que se inició en el año 1990, tuvo como propósito descifrar el código genético contenido en los 23 pares de cromosomas, en su totalidad. En 2005 se dio por finalizado este estudio llegando a secuenciarse aproximadamente 28000 genes.
La función de la gran mayoría de las bases del genoma humano es desconocida. El Proyecto ENCODE (acrónimo de ENCyclopedia Of DNA Elements) ha trazado regiones de transcripción, asociación a factores de transcripción, estructura de la cromatina y modificación de las histonas. Estos datos han permitido asignar funciones bioquímicas para el 80% del genoma, principalmente, fuera de los exones codificantes de proteínas. El proyecto ENCODE proporciona nuevos conocimientos sobre la organización y la regulación de los genes y el genoma, y un recurso importante para el estudio de la biología humana y las enfermedades.

Cromosomas


El genoma humano (como el de cualquier organismo eucariota) está formado por cromosomas, que son largas secuencias continuas de ADN altamente organizadas espacialmente (con ayuda de proteínas histónicas y no histónicas) para adoptar una forma ultracondensada en metafase. Son observables con microscopía óptica convencional o de fluorescencia mediante técnicas de citogenética y se ordenan formando un cariotipo.
El cariotipo humano normal contiene un total de 23 pares de cromosomas distintos: 22 pares de autosomas más 1 par de cromosomas sexuales que determinan el sexo del individuo. Los cromosomas 1-22 fueron numerados en orden decreciente de tamaño en base al cariotipo. Sin embargo, posteriormente pudo comprobarse que el cromosoma 22 es en realidad mayor que el 21.
Representación gráfica del cariotipohumano normal.(Imagen 1).
Las células somáticas de un organismo poseen en su núcleo un total de 46 cromosomas (23 pares): una dotación de 22 autosomas procedentes de cada progenitor y un par de cromosomas sexuales, un cromosoma X de la madre y un X o un Y del padre. (Ver imagen 1). Los gametos -óvulos y espermatozoides- poseen una dotación haploide de 23 cromosomas.

Un gen es la unidad humana básica de la herencia, y porta la información genética necesaria para la síntesis de una proteína (genes codificantes) o de un ARN no codificante (genes de ARN). Está formado por una secuencia promotora, que regula su expresión, y una secuencia que se transcribe, compuesta a su vez por: secuencias UTR (regiones flanqueantes no traducidas), necesarias para la traducción y la estabilidad del ARNm, exones (codificantes) e intrones, que son secuencias de ADN no traducidas situadas entre dos exones que serán eliminadas en el procesamiento del ARNm (ayuste).
Este diagrama esquemático muestra un gen en relación a su estructura física (doble hélice de ADN) y a un cromosoma (derecha). Los intrones son regiones frecuentemente encontradas en los genes de eucariotas, que setranscriben, pero son eliminadas en el procesamiento del ARN (ayuste) para producir un ARNm formado sólo por exones, encargados de traducir una proteína. Este diagrama es en exceso simplificado ya que muestra un gen compuesto por unos 40 pares de bases cuando en realidad su tamaño medio es de 20.000-30.000 pares de bases).
Actualmente se estima que el genoma humano contiene entre 20.000 y 25.000 genes codificantes de proteínas, estimación muy inferior a las predicciones iniciales que hablaban de unos 100.000 genes o más. Esto implica que el genoma humano tiene menos del doble de genes que organismos eucariotas mucho más simples, como la mosca de la fruta o el nematodo Caenorhabditis elegans. Sin embargo, las células humanas recurren ampliamente al splicing (ayuste) alternativo para producir varias proteínas distintas a partir de un mismo gen, como consecuencia de lo cual el proteoma humano es más amplio que el de otros organismos mucho más simples. En la práctica, el genoma tan sólo porta la información necesaria para una expresión perfectamente coordinada y regulada del conjunto de proteínas que conforman el proteoma, siendo éste el encargado de ejecutar la mayor parte de las funciones celulares.


6 comentarios:

  1. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  2. Dulce María Serrano Sánchez 3º III NL:41
    La tecnología aplicada en la medicina es una avance que esta generando un mejoramiento en las personas ya que es a través de estas que se puede generar un nuevo producto o aparatos para la mejora de las personas.

    ResponderEliminar
  3. es muy importante conocer el hecho de que hay diversas alternativas para curar enfermedades y que no necesariamente todas tienen que ser con medicamentos o por medio de cirugías si no que puede ser una forma menos dolorosa

    ResponderEliminar
  4. Existen varias maneras de curar las enfermedades. La mayoría de nosotros hemos estado acostumbrados a ir siempre con el médico (ya que es lo más normal).
    Pero existen otras maneras de curarse por ejemplo:
    La acupuntura: que es la curación a través de agujas invertidas en el cuerpo, esto se originó en China y ha Sido usado en varias partes del mundo, pero esto es solo una pseudociencia ya que no tiene bases científicas.
    Dieta: no es nada más y nada menos que la ingesta de alimentos de acuerdo a las necesidades de cada persona.
    Después vienen las ciencias extrañas como:
    Hidroterapia: es el empleo de agua para la curación de las enfermedades.
    Terapia de quelacion: es ub procedimiento médico que implica la administración de agentes quelantes para la eliminación de metales de metales pesados del cuerpo. Es administrada bajo supervisión médica muy cuidadosa de ido a sus altos riesgos.

    ResponderEliminar
  5. A través del tiempo hemos notado diversas formas de curar las enfermedades, por ejemplo, retrocedemos un par de miles de años y nos encontramos que en ese tiempo se practicaba la herbolaria, pero el hombre no sólo decidió curar enfermedades, más bien fue más aya y comenzó a practicar las cirugías, los transplantes de órganos y todavía va más aya, actualmente se realizan estudios con impresoras 3D, las cuales, en un futuro podrían llegar a salvar miles ee vidas, ya que estos estudios se basan en la creación de órganos funcionales para aquellas personas que no corren con suerte de encontrar un donador, simplemente es magnífico observar lo maravillosa que es la medicina.

    ResponderEliminar
  6. Es un término con el que debemos estar acostumbrados, porque si bien no es nuevo, la verdad es que con el paso del tiempo se volverá cada vez más relevante, la curación data desde siempre y aunque en tiempos remotos los tratamientos no tenían la tecnología ni la sofisticación que hoy en día resultaban efectivos, porque se recurría al uso de métodos naturales lo que hoy es solo visto por las personas de edad más avanzada, hay que saltar barreras e informarnos con este tipo de conceptos porque mañana serán el tema del futuro por eso es de vital importancia irnos llenando de esta información con mayor frecuencia.

    ResponderEliminar